Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental 129Xe NMR Spectroscopy
نویسندگان
چکیده
An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by 129 Xe NMR spectroscopy. The high sensitivity of the 129 Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures.
منابع مشابه
A Fugacity Approach for Prediction of Phase Equilibria of Methane Clathrate Hydrate in Structure H
In this communication, a thermodynamic model is presented to predict the dissociation conditions of structure H (sH) clathrate hydrates with methane as help gas. This approach is an extension of the Klauda and Sandler fugacity model (2000) for prediction of phase boundaries of sI and sII clathrate hydrates. The phase behavior of the water and hydrocarbon system is modeled using the Peng-Robinso...
متن کاملClathrate Hydrates: Some New Structural Information
INTRODUCTION The accurate prediction of conditions for hydrate formation depends strongly on the availability of good structural information’. For clathrate hydrates, a complete description of structure involves not only the unit cell parameters and average atomic positions, but also the cage occupancies. In order to provide this kind of information, it is necessary to use techniques such as di...
متن کاملPowder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy.
A protocol for the ab initio crystal structure determination of powdered solids at natural isotopic abundance by combining solid-state NMR spectroscopy, crystal structure prediction, and DFT chemical shift calculations was evaluated to determine the crystal structures of four small drug molecules: cocaine, flutamide, flufenamic acid, and theophylline. For cocaine, flutamide and flufenamic acid,...
متن کاملSynthesis and Crystal Structure of [Pb(gly)2]n; New lead(II) Coordination Polymer with Glycine Ligand
[Pb(gly)2]n (1) (gly is the abbreviation of Glycine) have been synthesized and characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The single crystal structure of 1 show the complex is 2D coordination polymer with octahedral environment that is formed into 3D supramolecule through hydrogen bond. Structural determination of compound 1 reveals the Pb(II) ion is four coordina...
متن کاملDetection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2017